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Abstract: In this manuscript, we will use values of alternative 

definitions of reactive power as ANN inputs for classification of 

nonlinear loads. The presented method is indirect, and also fits 

into NILM (Non-Intrusive Load Monitoring) category – we have 

used one measuring device for various combinations of nonlinear 

loads. The method consists of three phases: acquisition (measure-

ment), calculations of reactive power using different devinitions 

and device identification and classification using ANNs. 
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INTRODUCTION 

The definitions of active, reactive and apparent power 

are well known, and their relation is given by quadratic 

equation 2 2 2S P Q  . The quadratic nature of the given 

formula is due to current and voltage sinusoidal waveforms 

and definitions of their root mean square values. However, 

in non-linear circuits, we have voltages and currents whose 

waveforms deviate from the sinusoidal. Observed in the 

frequency domain, their spectra contain higher harmonics, 

which must be included in the calculations of power. There-

fore, the decomposition of apparent power, and definition of 

reactive power as well, must be redefined [1]. 

There are a number of power decompositions and defi-

nitions for non-linear circuits presented in literature [1,2].  

Those definitions can be used to characterize nonlinear 

loads and measure non-linearity. All power decompositions 

have some advantages and disadvantages over others. There 

is no generally accepted definition and the debate is ongo-

ing. 

The higher harmonic components in the current spec-

trum cause losses and disturbance in the power grid. Never-

theless, they can be regarded as specific signature of some 

nonlinear load, therefore providing the means for classify-

ing nonlinear loads connected to the power grid [3]. The 

identification and classification methods of nonlinear loads 

can be direct – using harmonic components, or indirect – 

using some parameters that depends on harmonics. In our 

previous reports, we have presented an indirect method for 

classification of nonlinear loads using artificial neural net-

works (ANNs), based on active, reactive and distortion 

power [4,5]. The direct method, using current spectrum is 

elaborated in [3]. 

In this manuscript, we will use values of alternative defi-

nitions of reactive power as ANN inputs for classification of 

nonlinear loads. The presented method is indirect, and also 

fits into NILM (Non-Intrusive Load Monitoring) category – 

we have used one measuring device for various combina-

tions of nonlinear loads. The method involves three phases: 

acquisition (measurement), calculations of reactive power 

using different devinitions and device identification and 

classification using ANNs. 

The acquisition and calculations are achieved using sys-

tem for nonlinear load analysis [6,7] (Figure 1). 

 

Fig.1 – System for nonlinear load analysis, screenshot  

of the virtual instrument  

The active power (P) and seven different definitions of 

reactive power are calculated: Budeanu’s (QB), Fryze’s (Qf), 

IEEE definition (QIEEE), Sharon’s (Sq), Kimbark’s (Qk) and 

two Kusters-Moore definitions (QC and QL). The calculated 

values are used for ANN training. 

Finally, the trained ANN is applied for identification of 

similar nonlinear loads and unknown groupings of loads 

connected to the power grid. 

DEFINITION OF REACTIVE POWER 

We will consider the most general case, when current 

and voltage are arbitrary functions of time:  i t and  v t . 

The instantenious power is defined as 

      .p t i t v t   (1) 

The active power is usually defined as energy flow de-

livered from generator to load per unit of time: 
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If voltage and current are periodic functions, T repre-

sents the fundamental period. 

Usually, current (or voltage) is represented by root mean 

square value (rms), defined as: 

  2

RMS

0

1
.

T

I i t dt
T

   (3) 

Physically, current (voltage) root mean square value is 

equal to constant current (voltage) that dissipate same pow-

er on pure resistive load. 

Apparent power, S  is defined as product of current and 

voltage rms values: 

 
RMS RMS.S V I   (4) 

In case of constant voltage/current, or sinusoidal volt-

age/current waveforms in the circuits with pure resistive 

linear loads (phase diference between waveforms are 0), 

apparent power and active power are equal. If reactive line-

ar loads are present in the circuit with sinusoidal generators, 

there is phase difference between voltage and current wave-

forms. Apparent and active power differs and one can intro-

duce reactive power, Q . The relation between apparent, 

active and reactive power are well known formula: 

 2 2 2.S P Q   (5) 

The physical meaning of reactive power is not trivial, it 

can be understood as energy flow that “oscillates” in the 

circuit, but is never dissipated. 

A cicuit with nonlinear loads is more complicated case. 

Current (and voltage) waveforms are not sinusoidal and one 

can introduce more power components in the equation (5). 

This process is refered as power decomposition. 

We will briefly review most common power decomposi-

tions and reactive power definitions which arise from them.  

Budeanu’s definition 

The Budeanu’s definition is the most used definition of 

reactive power bQ , given by the following equation: 

  b ,RMS ,RMS

1

sin ,k k k

k

Q I V 




    (6) 

where k is harmonic order, ,RMSkI and ,RMSkV  rms values 

of k
th

 harmonic and k phase difference. 

 The apparent power is decomposed into two orthogonal 

components, active power (2) and non-active power bN ,  

 
2 2

bN S P   (7) 

which is further separated into reactive power and distortion 

power: 

 
2 2

b b b .D N Q   (8) 

IEEE Standard 1459-2010 

The IEEE Standard 1459-2010 introduces reactive pow-

er calculated as: 
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Definition (9) ensures that the total reactive power 

IEEEQ is always greater than reactive power of the funda-

mental component. 

Kimbark’s definition 

Alike Budeanu’s definition, this definition assumes that 

apparent power consists of two orthogonal components, 

active power defined as average power (2) and non-active 

power 
kN . The non-active power is decomposed into two 

components, reactive 
kQ and distortion power 

kD . Reactive 

power is calculated with respect to first (fundamental) har-

monic: 

  k 1,RMS 1,RMS 1sin .Q I V     (10) 

Furher, distortion power is calculated as 

 
2 2 2

k k .D S P Q    (11) 

Fryze’s definition 

The Fryze’s decomposition introduces instantaneous 

current division into two components refered as active and 

reactive current, calculated as 

    a 2
RMS

P
i t v t

V
  (12) 

      r a .i t i t i t   (13) 

The corresponding power definitions are 

 RMS aP V I   (14) 

 f RMS rQ V I   (15) 

where 
aI and 

rI are rms values of (12) and (13), calculated 

using equation (3). 

Sharon’s definition 

This definition introduces two quantities: reactive ap-

parent power 

 2 2
q RMS ,RMS

1

sin ( )k k

k

S V I 




    (16) 

and complementary apparent power 

 2 2 2
c qS S P S    (17) 

where S and P are apparent and active power, previously 

defined. 

Kusters-Moore definitions 

This decomposition introduces two different reactive 

power definitions, inductive reactive power and capacitive 

reactive power: 
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PARAMETAR EXTRACTION 

The parameter extraction is  performed using system for 

nonlinear load analysis [6,7] (Figure 1). 

First, the voltage and current waveform acquisition is 

achieved using acquisition modules with 16-bit A/D resolu-

tion, 100 kSa/s sampling rate and ±50 A dynamic range. 

The active power (P) and seven different definitions of re-

active power (QB, QIEEE, Qk, Qf, Sq, QC and QL) are numeri-

cally calculated using equations (6) – (19), previously per-

forming FFT algorithm on sampled sequences. In this ex-

periment, we calculated voltage and current harmonics up to 

40th harmonic. 

The complete system is examined in detail in [6,7]. The 

system is capable for real-time operation, but due to the 

offline nature of ANN training, this capability is not used. 

The parameter extraction is performed on 12 different 

combinations of various devices, shown in the Table I. We 

have considered devices that are typical for an office: one 

laptop, one server, one monitor, one kettle, one LED bulb, 

and an air-condition that can be in two operation modes: 

cooling and idle. Both the laptop coputer and the server 

operated with idle CPU utilization in all cases, so they can 

be treated as nonlinear stationary loads with constant power 

consumptions.  

Table I 

Characteristic combinations of the devices. 

Code Device 

1 LED Bulb 

2 Kettle 

3 Server 

4 Air-condition idle 

5 Air-condition cooling 

6 Server + monitor 

7 Server + monitor + laptop 

8 Server + monitor + laptop + kettle 

9 Server + monitor + laptop +  LED Bulb 

10 
Server + monitor + laptop +  Air-condition 

idle 

11 
Server + monitor + laptop +  Air-condition 

cooling 

12 
Server + monitor + laptop +  Air-condition 

cooling + LED Bulb 

 

The codes are given in the first column of the Table I, 

and also in the first row of the Table II. First column of the 

Table II represents the harmonic order, k. The values for 

various reactive power definitios are expressed in volt-

amperes (VA) and value of active power in watts (W). 

Table II 

Values of powers for the combinations of devices 

Code Qb Qf QIEEE Sq 

1 -2.490 7.295 2.467 4.921 

2 -5.009 4.979 4.994 5.215 

3 -30.585 36.092 30.554 31.799 

4 -23.424 76.159 22.743 67.388 

5 -22.379 178.221 21.948 79.226 

6 -20.766 54.554 20.317 32.250 

7 -49.658 64.038 49.118 57.385 

8 -8.601 36.561 8.203 26.352 

9 -92.287 69.718 91.740 96.502 

10 -92.826 98.032 92.099 99.796 

11 -72.943 186.980 72.337 118.543 

12 -79.992 183.875 79.493 115.861 

Code Qk QC QL P 

1 -2.467 -1.709 -2.451 9.663 

2 -4.994 -3.309 -4.959 1738.502 

3 -30.554 -19.751 -30.334 60.166 

4 -22.738 -16.727 -22.740 52.725 

5 -21.942 -14.976 -21.931 546.094 

6 -20.315 -14.744 -20.243 97.018 

7 -49.117 -33.472 -48.840 126.300 

8 -8.199 -6.755 -8.215 1849.744 

9 -91.740 -61.242 -91.186 142.552 

10 -92.098 -62.039 -91.556 150.536 

11 -72.335 -47.734 -71.965 625.395 

12 -79.491 -51.649 -79.057 636.184 

ANN TRAINING AND IDENTIFICATION 

Artificial neural network needs to be trained for model-

ing the look-up table. It is a feed-forward neural network 

with one hidden layer. The measured values from the Table 

II are inputs to the network, and the Code is network output 

to be learned. It means that the neural network has eight 

input neurons and one output neuron. After training was 

completed, the number of hidden neurons in the resulting 

ANN was three, what was found by trial and error after sev-

eral iterations starting with an estimation based on [8], and 

[9]. 

The structure and the parameters of both obtained ANNs 

are verified by exciting the ANN with the given inputs. Re-

sponses of the ANN show that there were no errors in iden-

tifying the codes what is presented in the Table III. Negligi-

ble discrepancies may be observed. 

 

 

 

 

 



Table III 

Characteristic combinations of the devices. 

Expected 

Code 

ANN Output 

(20 hidden neurons) 

1 0.999713 

2 1.99972 

3 2.99644 

4 3.99765 

5 4.99778 

6 5.99762 

7 6.994 

8 7.99931 

9 8.98835 

10 9.98908 

11 10.9922 

12 11.9916 

CONCLUSION 

Presence of nonlinear loads in AC circuits causes 

nonsninusoidal conditions, which causes many negative 

impacts on distribution system. In this case, simple decom-

position of apparent power is no longer valid. There is a 

number of approaches to overcame this problem and char-

acterize nonlinear lodas – power decompositions. 

Most of the known NILM methods for identification de-

vices use artificial neural networks. In this manuscript, ve 

have demonstrated a nonintrusive load monithoring method 

for nonlinear load identification and classification whis uses 

different definitions of reactive power. Those quantities are 

measured and calculated in order to be used as training set 

for AAN. 
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